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Motivation

Multiphase flow models are used in subsurface studies to simulate the
movement of fluids in a porous media environment.

• Oil-water simulation for reservoir modeling

• Black oil (three-phase) simulations

• NAPL remediation

• Groundwater flow in the unsaturated zone

The IPARS framework developed at CSM was developed to provide fast,
accurate, three-dimensional simulations for each of the above.
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Mass Balance

The mass balance equation for each of the α phases is given by

φ
∂

∂t
(ηραSα) +∇ · (Uα) = qα,

where Uα is given by Darcy’s Law,

Uα = −ραK
kα

µα
(∇pα − ραG∇D).
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Advantages to Air-Water Formulation

• Consider both air and water phases

• Use data and splines to evaluate nonlinearities

• Use conservative algorithms for discretization

• Handle a variety of boundary conditions
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Two-Phase Equations

Putting together the Darcy velocity and mass balance gives the two-phase
equations

∂

∂t
(ραηSα)−∇ ·

(

ραk
krα

µα
(∇pα − ραG∇D)

)

= qα,

where

µα = viscosity
kα = relative permeability

The system is closed by including the saturation relationship

Sa + Sw = 1,

and the capillary pressure relationship

pc(Sw) = pn − pw.
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Density

The water phase is assumed to be slightly compressible; hence

ρw = ρ0 expcw(pw−p0)

where cw is the compressibility constant and ρ0 and p0 are reference densities
and pressures.

The density for the air phase is obtained via the real gas law

ρa =
paM

Z(pa)RT
,

where R is the gas constant, M is the molecular weight of the gas, T is the
temperature, and Z is the Z-factor.
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Initialization

The reservoir is initialized by enforcing an equilibrium condition

∇pα − ραg∇D = 0.

This is done by using Newton loops to initialize both water and air pressures
along with the water saturation.

The discretized equilibrium condition is

pi+1 − pi − g
1

2
(ρi + ρi+1) (Di+1 −Di) = 0.
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Adjusting Density

The density for the water phase is

ρw = ρw,refe
cw(pw−pw,ref ).

Thus

ρw,i+1 = ρw,refe
cw(pw,i+1−pw,ref )

= ρw,refe
cw(pw,i+1−pw,i+pw,i−pw,ref )

= ρw,refe
cw∆pwecw(pw,i−pw,ref )

= ρw,ie
cw∆pw.

Department of Mathematical Sciences
Clemson University



Newton Equation for Water Pressure Equilibrium

For equilibrium of water pressure, we have

F (∆pw) = ∆pw − g
1

2
ρi
(

1 + expcw∆pw
)

(Di+1 −Di)

giving a Jacobian

F ′ (∆p) = 1−
g

2
cwρw,i∆pw∆D.
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Initial Guess

The initial guess is found by assuming that

ρw,i+1 = ρw,i +
δρw

δpw

∣

∣

∣

∣

pw,i

(

p0w,i+1 − pw,i
)

,

which gives

∆p0w =
gρw, i∆D

1− g
2cwρw,i∆D
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Air Phase Density

The Newton function for the air equilibrium condition is

F (pi+1) = pi+1 − pi − g
1

2
(Di+1 −Di)

(

M

RT

)(

pi

Z(pi)
+

pi+1

Z(pi+1)

)

The initial guess for air equilibrium is based on the same assumptions, so that

pa,i+1 = pa,i +
g
2∆Dρa,i

1− g
2∆D

M
RT

(

pa,i

Zi

)

Department of Mathematical Sciences
Clemson University



Initialization for Saturation

The Newton function for the saturation initialization is

F (x) = pc − pc,prev,

where pc,prev is fixed. The saturation is updated as

sw = sw,prev −
F (xcurrent)

dpc
.
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Spatial Discretization

• Cell-centered finite difference scheme

• Equivalent to the expanded mixed finite element method

– Spaces are lowest order Raviart-Thomas spaces
(Wh,V h) ⊂ (W,V ) = (L2(Ω), {v ∈ H(div; Ω),v · ν|∂Ω = 0})

– Rectangular grid

– References:

∗ Russell, Wheeler (1983)

∗ Arbogast, Wheeler, Yotov (1996, 1997)
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Vauclin Test Problem

• Test problem from Vauclin, Khanji, Vachaud (Water Resources Research,
1979)

• Empirical and numerical results

• Transient

• Two-dimensional

• Vadose zone water table recharge
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Test Domain
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600 cm

200 cm

135 cm

100 cm
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Water Saturation Data

I / J = 1 5 9 13 20
1 .5750E-02 .5525E-02 .5525E-02 .5525E-02 .4023E-03
2 .7648E-02 .7647E-02 .7647E-02 .7647E-02 .5050E-03
3 .1235E-01 .1235E-01 .1235E-01 .1235E-01 .6782E-03
4 .3008E-01 .3008E-01 .3008E-01 .3008E-01 .1032E-02
5 .2043 .2043 .2043 .2043 .2158E-02
6 .9906 .9906 .9906 .9906 .4999
7 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.000
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Contours at Day 1

SWAT

0.911319
0.701107
0.490896
0.280685
0.0704737

PWAT

508.911
506.79
504.67
502.549
500.429
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Oxbow Computational Domain

Γ1 Γ2

Γ3
Γ4

gravity
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Saturations at Day 1

SWAT
0.653288
0.572564
0.491839
0.411115

X Y

Z

SWAT
0.799993
0.599995
0.399996
0.199998
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Saturations at Day 51

SWAT
0.653288
0.572564
0.491839
0.411115

X Y

Z

SWAT
0.799993
0.599995
0.399996
0.199998
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Saturations at Day 101

SWAT
0.653288
0.572564
0.491839
0.411115

X Y

Z

SWAT
0.799993
0.599995
0.399996
0.199998
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